Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin.
نویسندگان
چکیده
Ascorbic acid enhances NO bioactivity in patients with vascular disease through unclear mechanism(s). We investigated the role of intracellular ascorbic acid in endothelium-derived NO bioactivity. Incubation of porcine aortic endothelial cells (PAECs) with ascorbic acid produced time- and dose-dependent intracellular ascorbic acid accumulation that enhanced NO bioactivity by 70% measured as A23187-induced cGMP accumulation. This effect was due to enhanced NO production because ascorbate stimulated both PAEC nitrogen oxide (NO(2)(-) + NO(3)(-)) production and l-arginine to l-citrulline conversion by 59 and 72%, respectively, without altering the cGMP response to authentic NO. Ascorbic acid also stimulated the catalytic activity of eNOS derived from either PAEC membrane fractions or baculovirus-infected Sf9 cells. Ascorbic acid enhanced bovine eNOS V(max) by approximately 50% without altering the K(m) for l-arginine. The effect of ascorbate was tetrahydrobiopterin (BH(4))-dependent, because ascorbate was ineffective with BH(4) concentrations >10 microm or in PAECs treated with sepiapterin to increase intracellular BH(4). The effect of ascorbic acid was also specific because A23187-stimulated cGMP accumulation in PAECs was insensitive to intracellular glutathione manipulation and only ascorbic acid, not glutathione, increased the intracellular concentration of BH(4). These data suggest that ascorbic acid enhances NO bioactivity in a BH(4)-dependent manner by increasing intracellular BH(4) content.
منابع مشابه
Ascorbate enhances iNOS activity by increasing tetrahydrobiopterin in RAW 264.7 cells.
Studies on the effect of ascorbic acid on inducible nitric oxide synthase (iNOS) activity are few and diverse, likely to be dependent on the species of cells. We investigated a role of ascorbic acid in iNOS induction and nitric oxide (NO) generation in mouse macrophage cell line RAW 264.7. Although interferon- (IFN-) gamma alone produced NO end products, ascorbic acid enhanced NO production onl...
متن کاملL-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin.
Ascorbic acid has been shown to stimulate endothelial nitric oxide (NO) synthesis in a time- and concentration-dependent fashion without affecting NO synthase (NOS) expression or l-arginine uptake. The present study investigates if the underlying mechanism is related to the NOS cofactor tetrahydrobiopterin. Pretreatment of human umbilical vein endothelial cells with ascorbate (1 microm to 1 mm,...
متن کاملLong-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity.
In cultured endothelial cells, the antioxidant, L-ascorbic acid (vitamin C), increases nitric oxide synthase (NOS) enzyme activity via chemical stabilization of tetrahydrobiopterin. Our objective was to determine the effect of vitamin C on NOS function and tetrahydrobiopterin metabolism in vivo. Twenty-six to twenty-eight weeks of diet supplementation with vitamin C (1%/kg chow) significantly i...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملRegulation of Nitric Oxide Synthesis by Proinflammatory Cytokines
We have examined cytokine regulation of nitric oxide synthase (NOS) in human umbilical vein endothelial cells (HUVEC). 24-h treatment with IFN-'y (200 U/ml) plus TNF (200 U/ml) or IL-1,8 (5 U /ml) increased NOS activity in HUVEC lysates, measured as conversion of I '4CIL-arginine to [ '4Cj L-citrulline. Essentially, all NOS activity in these cells was calcium dependent and membrane associated. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 23 شماره
صفحات -
تاریخ انتشار 2000